
Introduction
Monitoring animal populations is crucial to wildlife
researchers and managers for a wide spectrum of reasons,
including setting harvest-management parameters, assessing
biodiversity, tracking threatened or endangered species,
disease surveillance, management of wildlife in conflict with
human interests, compliance with regulatory requirements,
and the general accumulation of knowledge. Ideally, the
exact number of animals within an area of interest would be
known but, in reality, this is a rare circumstance and popu-
lation size is often assessed through sampling procedures.
Density-estimation procedures such as mark–capture
(e.g. Otis et al. 1978) and line transect (e.g. Burnham et al.
1980) methods attempt to estimate the actual number or
density of animals in an area, but they are often difficult or
expensive to implement for many animal species, and they
may require difficult-to-meet analytical assumptions that,
when violated, result in estimates of questionable quality
(see Krebs 1998 and Leidloff 2000 for an examination of
potential problems with mark–recapture methods and
Burnham et al. 1980 for a similar discussion on line-transect
methods). Often, problems couched in terms of absolute
density can be redefined such that an index parameter reflec-
tive of population abundance will provide an efficient solu-
tion (Caughley 1977; Krebs 1998). Indexing procedures are

additional tools in the armamentarium of methods available
for monitoring wildlife populations (e.g. Engeman 2003).
Examples include tracking rates, faeces deposition, capture
rates, bait consumption, or visual observations, among a host
of possibilities. Because indices are not estimates of actual
population numbers, they are applied to make relative com-
parisons between populations or to monitor trends within a
population (e.g. Caughley 1977; Krebs 1998).

Here, a general observational and analytical paradigm is
presented into which a wide variety of measurement
methods for indexing many species of animals can fit. The
data structure from which index values are calculated leads
to the derivation of the index variance estimate while requir-
ing minimal analytical assumptions about the observations.

Desirable qualities for an index

An indexing methodology obtains maximal utility when it
possesses certain desirable characteristics. Some of these
result from the data structure or the analytical method,
whereas others can result from observational methods.

Practicality. An index method must be practical to apply.
This might be said of any sampling procedure but, beyond
that, practicality is a prime deciding factor for choosing to use
an index in the first place. The index method should be user-
friendly, with the procedures and concepts for recording
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information easily understood, and with little chance for con-
fusion among species. Methods must impose minimal incon-
venience on landowners and managers to be acceptable.

Sensitivity. An index should be sensitive to differences
in population size, whether making simultaneous compar-
isons among multiple populations, or monitoring for change
within the same population. That is, the measurements upon
which the index is based should change if the population
changes. For example, structure counts often are used as
indices to compare muskrat (Ondatra zibethicus) popu-
lations between areas (Proulx and Gilbert 1984). However,
the longevity of structures built by muskrats make structure
counts an inefficient method to index short-term changes
within muskrat populations, whereas rigorously designed
visual counts may provide suitable sensitivity for this appli-
cation (Engeman and Whisson 2003).

Precision and variance estimation. Given an appro-
priate observation, the ability of an index to statistically
detect population differences increases with its precision.
This highlights a contrast between density estimation and
indexing. Density estimation strives to identify actual popu-
lation abundance directly, whereas indexing procedures seek
to use reflective measures for detecting differences in abun-
dance. Thus, general applications for density estimation
place a premium on accuracy (low bias), but the applications
for indices make precision of the utmost importance
(e.g. Caughley and Sinclair 1994). An index that is easily
applied in the field will likely encourage more observations,
with a consequent improvement in precision.

Since precision is essential to an index, it follows that the
data structure, measurements and index calculations define
an inherent estimate of variance, which in turn allows for the
application of standard statistical procedures. Often a situa-
tion exists where observations are made and an index pro-
duced, but the only avenue for estimating variance is to first
subdivide the data into units that can contribute to the vari-
ance calculations. This approach, especially if done post hoc,
can produce variance estimates that vary subjectively with
the definition of the units.

Robustness. The most robust inferences are produced if
the calculated index and associated variance are burdened
with as few assumptions as possible about the data structure
and the distribution of the observations. Violation of analyt-
ical assumptions is the bane of density-estimation methods
(see Krebs 1998 for a general overview), and can be a com-
pelling reason to apply an index rather than estimating
density. An index heavily reliant on analytical assumptions is
of minimal use to the investigator.

Other useful characteristics. Other characteristics can
make an indexing procedure more informative. First, if the
observation methods allow simultaneous monitoring of
multiple species, then economy of effort is achieved over
simultaneously applying different methods for different
species. Also, if information on geographic location is col-

lected along with the index observations, then spatial char-
acteristics of the population(s) may also be described.

General index format

A tremendous array of indexing procedures has been applied
to many species of animals. Each combination of observa-
tion, sampling frame and computation procedure results in a
parameter estimate for a population characteristic that is
reflective of animal abundance. Here, an indexing paradigm
is provided with a sampling structure in which many exist-
ing, or new, observation and measurement methods can be
couched so that the calculated estimates (index values)
possess useful statistical properties. The key components to
this paradigm are defining where the observations are taken,
the time dimension for taking observations, the measure-
ments to make, and the data structure and analytical pro-
cedures for calculating an index and its variance estimate.

Observation stations

The locations where observations are taken will be referred
to generically as stations. In practice, for example, each
station might be a plot for observing tracks or other animal
sign, a tracking tile, a chew card, a point where animal counts
are made, a site where bait consumption is measured, a
camera location, or even a trap line.

To index a population within an area, observation stations
should be set throughout the survey area of interest. That
being said, the distribution of observation stations must be
carefully considered relative to efficiency in obtaining ade-
quate measurement of the animals being monitored, and
avoiding bias in the results that could be induced by station
placement. Rarely do animals operate in a spatially random
pattern. Station locations may take advantage of behavioural
characteristics by placement where they would most likely
intersect the usual activities of the target animals (Engeman
et al. 2002). This is similar in concept to the capture of
animals. Capture devices are not placed with complete
randomness, but rather are placed where an animal is most
likely to encounter the capture device. Consider a tracking
plot example for collecting index data. Many species such as
canids preferentially use dirt roads or tracks as travel ways.
Placement of stations along such travelways is an efficient
means to obtain observations. If such travelways are dis-
tributed throughout the area of interest, they can provide a
means for station placement that is an efficient and
representative sampling of the population using the sur-
rounding habitat. Care and common sense must be applied
when choosing to take advantage of these behavioural char-
acteristics for monitoring animals. If roads or tracks are not
dispersed through the area of interest, then observations only
from them would not be representative of the population
throughout the area. If multiple indexing assessments are to
be made through time on the same area, then the same station
locations should be used if possible (e.g. Ryan and Heywood
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2003). If the area of interest is comprised of different habitat
types, then it is advisable to stratify station placement
according to habitat type, thus helping to ensure that the cal-
culated index reflects the population throughout the area
rather than being overly biased towards (or away from) a par-
ticular subset of habitat. Stratification also allows index
comparisons among the habitats within the area of interest,
information about which is often of biological and manage-
ment importance.

Stations should be dimensionally consistent in prepara-
tion. This applies to area dimensions of the stations, as well
as to time, weight or any other characteristic of the stations.
Thus, not only should stations such as tracking plots,
tracking tiles or chew cards have consistent sizes (e.g. rect-
angular dimensions), but chew cards should all have the
same thickness, bait-take stations should each start with the
same amount of bait, stations for making animal counts
should be observed for the same length of time and out to the
same distance.

Time dimension

Animal activity often is variable over even short periods.
Thus, to account for variability over time, the stations are
best observed on more than one occasion during an assess-
ment period. Typically, this means taking measurements at
each station on each of multiple days, but for some appli-
cations this could mean taking measurements every other
day, or multiple times during a day, or at some other period.
For simplicity, the time dimension will be referred to here as
a day effect, representing a common situation where obser-
vations at each indexing session would be made on multiple,
usually consecutive, days. The time elapsed between succes-
sive observations at each station should remain constant. For
example, assume observations are to be made at three time
points. The time lapsed for accumulation of data should be
constant at each of the three observation times. Say tracking
plots are to be observed 24 h after plot preparation, then each
succeeding observation of the plots should also be made 24 h
after plot preparation.

Measurements

Many types of measurements can fit the above observational
structure, including the general categories of animal counts,
measurement of animal sign, and catch per unit effort. For
the purposes of the methodology presented here, the obser-
vations taken at each station should be non-binary, that is,
continuous or unboundedly discrete. The variety of non-
binary indexing measurements at different types of observa-
tion stations include the number of intrusions by each
species of animal onto a dirt tracking plot, the area or pro-
portion of a tracking tile tracked by each species, the pro-
portion or area of a chew card consumed, the number of
individuals of each species observed in a fixed amount of
time within a fixed distance at each station (standardised by

time of day), or the daily number of captures or catch rate
from each of a number of trap lines in the area of interest
(e.g. Allen et al. 1996; Engeman and Witmer 2000; Engeman
and Whisson 2003).

Often, potentially continuous measures have been
neglected in favour of binary observations, i.e.
presence–absence measures at each station. Reduction of
potentially continuous data to binary observations is easily
demonstrated to have less descriptive ability and result in a
greater opportunity for erroneous inferences (Engeman et al.
1989), and this principle has been well demonstrated for
tracking-plot data (e.g. Allen et al. 1996; Engeman et al.
2000, 2002).

Binary observations have often been made because a con-
tinuous measurement was difficult to measure or was not
considered. For example, tracking tiles or chew cards are
easier to record as showing activity or not, without accu-
rately recording the intensity of activity at each station.
Observations on intensity of activity at these types of stations
may be made by measuring the area of activity at each
station. This measurement can be reliably approximated by
counting the squares on an overlaid grid showing activity.
Moreover, the universality of modern computing equipment
makes highly accurate area measurements a relatively simple
process using commonly available software.

A corollary to the use of continuous rather than binary
measures is that stations should be designed so that total
saturation at a station is unlikely. That is, an entire chew card
would be unlikely to be consumed overnight, not all bait at a
bait station would be consumed, or a tracking tile would not
be totally obliterated by animal activity. All stations can
receive activity, but an increase in intensity can still be
detected.

Another valuable measure at each station is its geograph-
ical location. This can be accomplished by the use of global
positioning devices, maps, or relative measurements among
station locations. Potentially, measuring or calculating dis-
tances among stations can be used in conjunction with
station observations to also index the spatial pattern of
animal activity within the survey area. One approach modi-
fies Hopkins’ (1954) index of aggregation, which has seen
other useful modifications (e.g. Engeman and Sugihara
1998). The IP (for index of pervasiveness) is defined mathe-
matically as:

IP = (1/n) Σ(w1/w2),

where n is the number of active stations, w1 is the square of
the distance from an active tracking station to the nearest
active station (nearest neighbour sample: Engeman et al.
1994), and w2 is the square of the distance from that nearest
station to its nearest active station (second-nearest neighbour
sample: Engeman et al. 1994). When the pattern is entirely
random, IP = 1. If the stations with activity show aggre-
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gations (localised concentrations), then IP > 1. For system-
atic spatial patterns of activity, IP < 1.

Data structure

The data structure, defined by the station placement design
and measurement method, provides the framework from
which a general index and its variance can be calculated. To
formalise a mathematical description of the data structure,
assume there are s stations at which observations will be
made on each of d time points (days). The measurement from
the ith station on the jth day, xij, can be represented as a linear
model:

xij = µ + Si + Dj + eij,

where the term µ is the overall mean measurement value per
station per day for the area being assessed. Dj is a random
effect due to the day on which an observation was made, with
j = 1, 2, 3 … d. Si is a random effect due to the ith station with
i = 1, 2, 3 … sj ≤ s representing the number of stations con-
tributing data on the jth day. The eij represent random obser-
vational noise, and are considered independent and
identically distributed with mean = 0 and variance = σe

2.
In practice, it would be unreasonable to assume that each

station would contribute data each day. Tracking plots can be
obliterated by livestock or vehicle traffic. Chew cards can
become lost. Observations at some stations may be missed
owing to unforeseen access restrictions. Thus, the number of
stations contributing data each day is allowed to vary.

To assume that stations are uncorrelated, or that observa-
tion days are uncorrelated, would be biologically unreason-
able in most circumstances. For example, animals may roam
greater distances than those separating the stations. Also,
stations that are closer together may share more characteris-
tics than do more distantly separated stations. Similarly,
environmental or climatic conditions should not be assumed
to be unrelated across days of observation. The stations in
this sampling framework are not assumed independent of
each other nor are days assumed independent of each other,
i.e. a non-zero covariance structure is assumed to exist
among stations and among days. Thus, the derivation of the
variance estimate is not reliant on a potentially unrealistic
assumption of independence.

Index calculations

The calculation of the general index (GI) begins by taking
the mean of the observations across all stations each day (this
is done separately for each species if more than one is mea-
sured at each station). The GI is the mean of the daily means,
and provides an average view of the measurements over
space and time within the area of interest. The GI can be
written in the linear model terminology as:

The variance formula for the GI is:

where the σs
2, σd

2, and σe
2 are, respectively, the components

for station-to-station variability, daily variability, and
random observational variability associated with each
station each day. A computational procedure such as SAS
PROC VARCOMP (SAS Institute 1996), using a restricted
maximum-likelihood estimation procedure (REML), can be
used to calculate the variance components (Searle et al.
1992) needed in the GI variance-estimation formula. If all s
of the tracking stations provide observations each day, the
formula simplifies to:

The existence of an inherent variance estimate for GI
allows standard statistical procedures such as confidence
intervals and hypothesis tests to be applied, as appropriate.
Appendix 1 provides an example for calculating the GI and
its variance.

Discussion

Population indexing and density estimation are among the
population-monitoring tools available to the investigator
(Engeman 2003). An investigator needs to be clear on the
monitoring objectives when deciding whether to estimate the
numerical size or density of the population, or whether to
apply an index reflective of the population. Given that an
indexing procedure would be suitable for the situation, a
great diversity of observation and measurement methods can
be integrated into the general index procedures presented
here, as illustrated in Table 1.

Although indices are valuable for detecting differences in
population abundances, they are not estimates of the numer-
ical abundance. An attempt to estimate actual abundance or
density from an index would require additional study where
known densities (not density estimates) are related to index
values with a statistical model. Although frequently seen in
the wildlife literature, attempting to define a relationship
between an index and true population numbers by establish-
ing a relationship between an index and an estimate of
density is inappropriate, because this yields only an indica-
tion of correspondence among methods, with the benchmark
still only an estimate of unknown quality (e.g. Caughley and
Sinclair 1994; Leidloff 2000).

If a population estimate is mandatory, then it is sensible
initially to devote the resources necessary for density or
abundance estimation. As White (2001) cautioned, ‘Don’t
even start the project if you can’t do it right’. The investigator
should be prepared to do all that is necessary in terms of
resources and information to adequately design a study that
ensures that adequate numbers are observed or captured, andGI =     Σ       Σ  xi j .
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that data are appropriately modelled without violating the
underlying assumptions for calculating the density estimate.
This is not a simple task. McKelvey and Pearson (2001)
found in a five-year literature review of small mammal
studies that 98% of the studies resulted in too few data for
valid mark–recapture population estimation. Such frequent
difficulties in meeting the requirements for density-
estimation procedures led Caughley and Sinclair (1994) to
assert that absolute estimates of population size or density
require a ‘leap of faith’ by the manager concerning the valid-
ity of analytical assumptions and the resulting accuracy of
estimates.

Application of the paradigm for data gathering and index
calculation goes a long way towards ensuring that the result-
ing index will possess many of the desirable qualities
described earlier. Nevertheless, a useful data structure and
analytical procedures by themselves do not guarantee that an
indexing method is suitable for meeting objectives.
Considerable room exists for artistry by the investigator in
deciding on the measurements to take and how to place the
stations. Sometimes a number of methods may be available
from which the most appropriate method must be selected.
On the other hand, a proven method may not be available. A
method successfully applied to a similar species or a similar
situation would be a good candidate method to test and apply.

Fully enumerated wild populations upon which methods
can be tested are rare. Therefore, examination of the utility of
an indexing procedure is properly approached through
experimentation. A straight-forward strategy is to index a
population, change that population, and then index the popu-
lation again. This can be repeated multiple times and is best

if a control area with no induced population change is simul-
taneously monitored using the same indexing method.

An index should increase if the population increases and
decrease if it decreases. Therefore, an index needs to be
monotonic relative to the true population to effectively
discern differences. Ideally, the index would have a linear
relationship with the population size, but to assume linearity
for analytical purposes would transform an index method
into a density-estimation method, with all of the associated
difficulties concerning analytical assumptions. The resultant
variability of an index determines the statistical detectability
of population differences. As long as they do not interfere
with one another, simultaneous application of multiple pro-
cedures provides comparisons on how each follows popu-
lation changes. A method would be selected on the basis of
its sensitivity to population differences and field logistics. If
a seemingly reasonable station placement and observation
method do not produce useful results, then minor changes in
methods may improve sensitivity to the presence of animals.
For example, a chew card might receive little attention by the
animal of interest even though populations are high. A
change in the impregnating substance could result in an
improved response. But clearly, a chew card index calculated
from responses using one impregnating substance is an
entirely different index, and not comparable with, an index
calculated from responses using a different impregnating
substance.

Many of the observational methods that can fit into the GI
format are suitable for simultaneously monitoring multiple
species of animals (e.g. tracking stations, visual counts).
Simultaneous monitoring of multiple species allows infer-

Indexing principles

Table 1. Examples of the diversity of animals and observation procedures encompassed by the general indexing paradigm

Station example Potential (non-binary) Examples of potential Example citations for the type of station
measurement species observed or measurement

Dirt tracking plots Number of intrusions by each Medium to large mammals Allen et al. (1996), Engeman et al. (2000), 
species into plot (e.g. carnivores, ungulates, (2001), (2003a), (2003b); 

macropods) Mahon et al. (1998)
Tracking tiles/plates Proportion/area tile tracked Rodents, small to medium-sized Barret (1983), Fiedler (1994);

each species carnivores Zielinski and Kucera (1995)
Mound count plot Number of mounds or feeder Pocket gophers Reid et al. (1966); Anthony and Barnes (1983); 

plugs in plot Engeman et al. (1993); 
Chew cards Proportion/area removed Rodents and other small to Caughley et al. (1998); 

(or remaining) medium-sized mammals Engeman and Witmer (2000)
Visual observation Number seen within a fixed time Birds, ground squirrels, muskrats Fagerstone and Biggins (1986); 

sites and distance Menkens et al. (1990); Powell et al. (1994);
Robbins et al. (1986); 
Severson and Plumb (1998); 
Servoss et al. (2000); 
Engeman and Whisson (2003)

Bait take Amount or proportion of Rodents, swine, deer, bear Chitty (1954); Choquenot et al. (1996)
bait removed

Apple slice(s) Amount or proportion of Voles Byers (1975); Tobin et al. (1992)
apple removed

Road segment Number of scats deposited in Canids Davison (1980); Andelt and Andelt (1984)
fixed time frame
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ences on relative population levels within each species, but
comparisons of index values across species is not appro-
priate. For example, consider monitoring multiple species
using intrusions to tracking plots on dirt roads. Different
species would have different home ranges, road usage, and
travel rates. Spoor-deposition rates, and hence GI values,
would differ among species even if their populations were
the same.

The variance components calculated for use in the GI
variance formula also provide helpful planning information
(e.g. Searle et al. 1992). The relative contributions of station-
to-station variation and day-to-day variation can be exam-
ined to optimise the combination of days and stations for
subsequent indexing assessments. For example, if the com-
ponent of variance for station-to-station variation was much
larger than the other sources of variation, then the emphasis
would be placed on the number of stations. However, if the
weather changed during the assessment period, then the
number of observation days should be increased, or the
assessment delayed. In reality, logistics and resources often
are the most important influences on sampling designs for
wildlife surveys.

The applications of the indexing methodology described
here have been exemplified by vertebrate animal popu-
lations, but the methodology is more broadly applicable.
Invertebrate animals can be indexed by this paradigm using
standard entomological methods. The observation stations

could be pitfall traps or standardised sweep-net collections,
with the measurements being daily counts at each station of
number of species, or number of insects of each species. The
same tracking plots as have been used to index populations
of vertebrate predators of marine turtle nests (Engeman et al.
2003b) could have been applied to index crab populations,
which also represent a substantial predation threat to the
turtle nests (Stancyk 1982). The GI also holds many general
ecological applications. Stations could be sediment or litter
traps to index daily deposition in streams or elsewhere.
Similarly, various plot and measurement configurations
could index leaf, needle or seed fall in plant communities. As
long as a suitable layout of stations is designed and appro-
priate observations are made, the methods summarised here
provide a straight-forward indexing procedure with useful
quantitative properties.
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Appendix 1. Example for calculating the General Index

The data in Table 2 were collected for assessing a dingo population on a cattle station in south-west Queensland, Australia. A sample of s = 50 tracking
plots was placed on dirt roads throughout the study area and observed for d = 4 consecutive days. The number of track intrusions into each plot by
dingoes was observed each day. The average number of sets of intrusions per plot per day were 0.94, 0.82, 1.30, 0.82 for Days 1, 2, 3, 4, respectively
(Table 2). The GI index value was calculated as:

(0.94 + 0.82 + 1.30 + 0.82)/4 = 0.97.

Application of VARCOMP in SAS produced variance component estimates of σs
2 = 0.1075, σd

2 = 0.0199, and σe
2 = 1.5767. We can use the equal-

sample-size formula because all plots were measurable on each of the four days, i.e. p1 = p2 = p3 = p4 = 50 for Days 1–4. Insertion of the above
information into the equal-sample-size equation for var(GI) yields:

var(GI) = 0.1075/50 + 0.0199/4 + 1.5767/200 = 0.0150

standard error (s.e.) = 0.122

coefficient of variation (c.v.) = 0.126.


